InternacionalAcceso estudiantes

Máster de Formación Permanente en
Inteligencia Artificial para el Sector Financiero

Planes de Estudios

Inicio

24 nov 2025

Duración

8 meses

Créditos

60 ECTS

Modalidad

Online interactivo

Titulo

Propio

Este posgrado cuenta con un plan de estudios dividido en ocho asignaturas que buscan completar tu perfil académico con herramientas y habilidades que emplear en el negocio.

Estructura del plan de estudios

Los créditos del programa están repartidos de la siguiente forma:

TIPOECTS
Obligatorias48
Proyecto final12
Créditos totales60

Consulta la distribución de asignaturas por cuatrimestres y sus contenidos, las competencias a adquirir, la metodología de aprendizaje, el proceso de evaluación, la bibliografía asociada y orientaciones para el estudio.

¿Qué aprenderás con estas asignaturas?

  • Arquitectura Bancaria y Entornos de Transformación: Se centra en la transformación digital en el sector financiero, abordando la innovación tecnológica y su impacto en la organización de las instituciones financieras. Los estudiantes explorarán la gestión y diseño de sistemas tecnológicos avanzados, la gestión ágil de proyectos, la automatización de procesos, y el uso de Big Data, preparándolos para liderar la evolución de la arquitectura financiera moderna.

  • Ingeniería, Análisis y Visualización Avanzada de Datos: Se enfoca en el manejo de grandes volúmenes de datos en el sector financiero, enseñando a los estudiantes sobre almacenamiento, extracción, transformación e integración de datos. Se cubren técnicas avanzadas de análisis y visualización de datos para convertir información en insights valiosos y presentarla de manera efectiva.

  • Aprendizaje Automático y Aprendizaje Profundo: Enseña a los estudiantes sobre enfoques y algoritmos de aprendizaje automático para mejorar el desempeño de las máquinas a través de la experiencia. Se exploran técnicas de aprendizaje supervisado, no supervisado y por refuerzo, junto con aprendizaje profundo basado en redes neuronales, utilizando herramientas sin código. Los contenidos incluyen preparación de datos, ajuste y optimización de modelos, y evaluación de su rendimiento.

  • Inteligencia Artificial Generativa: Enseña a desplegar Sistemas de Inteligencia Artificial Generativa en entidades financieras, abordando el análisis y uso de Modelos de Lenguaje Grande (LLM) para aplicaciones como etiquetado de conceptos, análisis predictivo y generación de resúmenes y código. Los estudiantes aprenderán a personalizar servicios, prevenir fraudes, gestionar riesgos, cumplir normativas, y automatizar procesos internos mediante chatbots y asistentes virtuales.

  • Inteligencia Artificial Aplicada a Procesos de Clientes: Prepara a los estudiantes para mejorar la experiencia del cliente en el sector financiero mediante sistemas de recomendación, chatbots, asistentes virtuales y análisis de satisfacción. Se estudian técnicas de clustering y scoring de clientes, personalización de la experiencia, automatización de documentos, y la implementación y monitorización eficiente de modelos en producción.

  • Inteligencia Artificial Aplicada a la Gestión de Riesgos: Esta asignatura se enfoca en aplicar la inteligencia artificial a la gestión de riesgos financieros, incluyendo la evaluación de riesgo de crédito, detección de anomalías, y prevención de fraudes. Se exploran modelos avanzados para alertas tempranas, simulaciones de estrés financiero, y el papel de la IA en el cumplimiento normativo y legal.

  • Inteligencia en la Optimización del Sistema Bancario e Inversiones: Prepara a los estudiantes para aplicar la Inteligencia Artificial en sistemas bancarios e inversiones, enfocándose en la optimización de redes de sucursales, predicción de precios y flujos de efectivo, y evaluación de riesgo de inversión. Se exploran técnicas para automatizar resúmenes de noticias financieras y sistemas de trading.

  • Gobierno, Ética y Privacidad de Datos en la Inteligencia Artificial: Enseña a los estudiantes a manejar la información en proyectos de Inteligencia Artificial, abarcando roles y responsabilidades, medidas de seguridad, privacidad, y gestión de datos. Se enfoca en la transparencia de modelos, detección de sesgos, y documentación, promoviendo una perspectiva ética y responsable en el desarrollo de IA. También se cubren temas como el seguimiento de modelos y datos, y la creación de datos sintéticos.